Simultaneously Dissipative Operators and the Infinitesimal Wrapping Effect in Interval Spaces
نویسنده
چکیده
Работа посвящена приложениям теории совместно диссипативных операторов к интервальному анализу и химической кинетике. Главным объектом исследования является нежелательный “эффект упаковывания”, широко проявляющийся при численном решении на ЭВМ эволюционных дифференциальных уравнений с интервальными параметрами. Основной результат работы — доказательство типичности эффекта упаковывания в малом, что объясняет низкую эффективность традиционных пошаговых методов численного решения интервальных дифференциальных задач.
منابع مشابه
Simultaneously Dissipative Operators and the Infinitesimal Moore Effect in Interval Spaces
Abstract. In solving a system of ordinary differential equations by an interval method the approximate solution at any considered moment of time t represents a set (called interval) containing the exact solution at the moment t. The intervals determining the solution of a system are often expanded in the course of time irrespective of the method and step used. The phenomenon of interval expansi...
متن کاملSimultaneously Dissipative Operators and the Infinitesimal Moore Effect in Interval Spaces1
In solving a system of ordinary differential equations by an interval method the approximate solution at any considered moment of time t represents a set (called interval) containing the exact solution at the moment t. The intervals determining the solution of a system are often expanded in the course of time irrespective of the method and step used. The phenomenon of interval expansion, called...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملStability and boundedness of continuous- and discrete-time systems
is stable. For infinite-dimensional systems the situation is more complicated. Although the eigenvalues still possess the same property as in the finite dimensional situation, they don’t longer rule the stability. Since many years it is an open question whether the stability of (1.1) and (1.2) are equivalent. For Banach spaces it is not hard to find a counter example, and so we concentrate on t...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کامل